Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 20(11): 2610-2623, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38426537

RESUMO

Adhesive dynamics of cells plays a critical role in determining different biophysical processes orchestrating health and disease in living systems. While the rolling of cells on functionalised substrates having similarity with biophysical pathways appears to be extensively discussed in the literature, the effect of an external stimulus in the form of an electric field on the same remains underemphasized. Here, we bring out the interplay of fluid shear and electric field on the rolling dynamics of adhesive cells in biofunctionalised micro-confinements. Our experimental results portray that an electric field, even restricted to low strengths within the physiologically relevant regimes, can significantly influence the cell adhesion dynamics. We quantify the electric field-mediated adhesive dynamics of the cells in terms of two key parameters, namely, the voltage-altered rolling velocity and the frequency of adhesion. The effect of the directionality of the electric field with respect to the flow direction is also analysed by studying cellular migration with electrical effects acting both along and against the flow. Our experiment, on one hand, demonstrates the importance of collagen functionalisation in the adhesive dynamics of cells through micro channels, while on the other hand, it reveals how the presence of an axial electric field can lead to significant alteration in the kinetic rate of bond breakage, thereby modifying the degree of cell-substrate adhesion and quantifying in terms of the adhesion frequency of the cells. Proceeding further forward, we offer a simple theoretical explanation towards deriving the kinetics of cellular bonding in the presence of an electric field, which corroborates favourably with our experimental outcome. These findings are likely to offer fundamental insights into the possibilities of local control of cellular adhesion via electric field mediated interactions, bearing critical implications in a wide variety of medical conditions ranging from wound healing to cancer metastasis.


Assuntos
Adesivos , Sinais (Psicologia) , Adesão Celular , Fenômenos Biofísicos , Movimento Celular/fisiologia
2.
Int J Biol Macromol ; 253(Pt 5): 127137, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37776929

RESUMO

We report a nucleic acid-based point of care testing technology for infectious disease detection at resource limited settings by integrating a low-cost portable device with machine learning-empowered quantitative colorimetric analytics that can be interfaced via a smartphone application. We substantiate our proposition by demonstrating the efficacy of this technology in detecting COVID-19 infection from human swab samples, using the RT-LAMP protocol. Comparison with gold standard results from real-time PCR evidences high sensitivity and specificity, ensuring simplicity, portability, and user-friendliness of the technology at the same time. Colorimetric analytics of the reaction output without necessitating the opening of the reaction microchambers enables execution of the complete test workflow without any laboratory control that may otherwise be required stringently for safeguarding against carryover contamination. Seamless sample-to-answer workflow and machine learning-based readout further assures minimal human intervention for the test readout, thus eliminating inevitable inaccuracies stemming from erroneous execution of the test as well as subjectivity in interpreting the outcome. Our results further indicate the possibilities of upgrading the technology to predict the pathogenic load on the infected patients akin to the cyclic threshold value of the real-time PCR, when calibrated with reference to a wide range of 'training' data for the machine learner, thereby putting forward the same as viable alternative to the resource-intensive PCR tests that cannot be made readily accessible at underserved community settings.


Assuntos
Doenças Transmissíveis , Ácidos Nucleicos , Humanos , Colorimetria , Smartphone , Testes Imediatos , Tecnologia
3.
Eur Phys J Spec Top ; 232(6): 781-815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36532608

RESUMO

A wide range of applications are possible with paper-based analytical devices, which are low priced, easy to fabricate and operate, and require no specialized equipment. Paper-based microfluidics offers the design of miniaturized POC devices to be applied in the health, environment, food, and energy sector employing the ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment free and Deliverable to end users) principle of WHO. Therefore, this field is growing very rapidly and ample research is being done. This review focuses on fabrication and detection techniques reported to date. Additionally, this review emphasises on the application of this technology in the area of medical diagnosis, energy generation, environmental monitoring, and food quality control. This review also presents the theoretical analysis of fluid flow in porous media for the efficient handling and control of fluids. The limitations of PAD have also been discussed with an emphasis to concern on the transformation of such devices from laboratory to the consumer.

4.
ACS Sens ; 7(7): 2028-2036, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35802863

RESUMO

Screening of anemic patients poses demanding challenges in extreme point-of-care settings where the gold standard diagnostic technologies are not pragmatic and the alternative point-of-care technologies suffer from compromised accuracy, prohibitive cost, process complexity, or reagent stability issues. As a disruption to this paradigm, here, we report the development of a smartphone-based sensor for rapid screening of anemic patients by exploiting the patterns formed by a spreading drop of blood on a wet paper strip wherein blood attempts to displace a more viscous fluid, on the porous matrix of a paper, leading to "finger-like" projections at the interface. We analyze the topological features of the pattern via smartphone-enabled image analytics and map the same with the relative occupancy of the red blood cells in the blood sample, allowing for label-free screening and classification of blood samples corresponding to moderate to severe anemic conditions. The accuracy of detection is verified by comparing with gold standard reports of hematology analyzer, showing a strong correlation coefficient (R2) of 0.975. This technique is likely to provide a crucial decision-making tool that obviates delicate reagents and skilled technicians for supreme functionality in resource-limited settings.


Assuntos
Anemia , Smartphone , Anemia/diagnóstico , Eritrócitos , Humanos , Sistemas Automatizados de Assistência Junto ao Leito
5.
Electrophoresis ; 43(5-6): 724-731, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34748645

RESUMO

We report a numerical study on the effect of the skimming layer in an EOF of Oldroyd-B fluid over charge modulated walls. Three types of flow conditions were identified on the basis of the relative thickness of the skimming layer and the electrical double layer. We observe maximum slip velocity magnitude when the skimming layer thickness is very less than the thickness of the electrical double layer. For higher skimming layer thickness compared to the thickness of electrical double layer, slip velocity magnitude attenuates, and the polymeric stress inside the skimming layer becomes zero. Enhanced fluid elasticity generates asymmetric flow structures inside the microchannel, which can also be achieved by imposing an asymmetric surface charge along the channel walls. Our present analysis highlights the complex flow dynamics of the EOF of biofluids/polymeric fluids with a near-wall region depleted of macro-molecules.

6.
ACS Sens ; 6(10): 3753-3764, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34582171

RESUMO

We developed a piecewise isothermal nucleic acid test (PINAT) as a platform technology for diagnosing pathogen-associated infections, empowered by an illustrative novel methodology that embeds an exclusive DNA-mediated specific probing reaction with the backbone of an isothermal reverse transcription cum amplification protocol for detecting viral RNA. In a point-of-care format, this test is executable in a unified single-step, single-chamber procedure, leading to seamless sample-to-result integration in an inexpensive, scalable, pre-programmable, and customizable portable device, with mobile-app-integrated interpretation and analytics involving minimal manually operative procedures. The test exhibited a high sensitivity and specificity of detection when assessed using 200 double-blind patient samples for detecting SARS-CoV-2 infection by the Indian Council of Medical Research (ICMR), and subsequently using 170 double-blind patient samples in a point-of-care format outside controlled laboratory settings as performed by unskilled technicians in an organized clinical trial. We also established its efficacy in detecting Influenza A infection by performing the diagnosis at the point of collection with uncompromised detection rigor. The envisaged trade-off between advanced laboratory-based molecular diagnostic procedures and the elegance of common rapid tests renders the method ideal for deployment in resource-limited settings towards catering the needs of the underserved.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/genética , SARS-CoV-2
7.
Soft Matter ; 16(48): 10921-10927, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33136111

RESUMO

A pendant drop merging with a sessile drop and subsequently forming a single daughter drop is known to exhibit complex topologies. But their dynamics are yet to be probed for fluids exhibiting characteristic relaxation time scales while undergoing the deformation process. Here, we unveil a universal temporal evolution of the neck radius of the daughter drop during the coalescence of two polymeric drops. Such a generalization does not rely on the existence of previously explored viscous and inertial dominated regimes for simpler fluids but is fundamentally premised on a unique topographical evolution with essential features of interest exclusively smaller than the dominant scales of the flow. Our findings are substantiated by a theoretical model that considers the drops under coalescence to be partially viscous and partially elastic in nature. These results are substantiated with high-speed imaging experiments on drops of polyacrylamide (PAM), polyvinyl alcohol (PVA), polyethylene oxide (PEO), and polyethylene glycol (PEG). The observations herein are expected to hold importance for a plethora of diverse processes ranging from biophysics and microfluidics to the processing of materials in a wide variety of industrial applications.

8.
Phys Rev Lett ; 124(6): 064501, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32109117

RESUMO

The concentration patterns of DNA molecules attached to the interface between two immiscible aqueous phases forming under an electric field are studied. The pattern formation is driven by hydrodynamic interactions between the molecules originating from the electro-osmotic flow due to the Debye layer around a molecule. A nonlinear integrodifferential equation is derived describing the time evolution of the concentration field at the liquid-liquid interface. A linear stability analysis of this equation shows that a mode of given wavelength is initially stable, but destabilizes after a critical time which is inversely proportional to the wavelength. The scaling behavior of the critical time with electric field strength and viscosity found in the experiments agrees with the predictions by the theoretical model.


Assuntos
DNA/química , Modelos Químicos , Campos Eletromagnéticos , Hidrodinâmica , Pressão Osmótica , Água/química
10.
Nano Lett ; 19(10): 7191-7200, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31507187

RESUMO

Developing low-weight, frugal, and sustainable power sources for resource-limited settings appears to be a challenging proposition for the advancement of next-generation sensing devices and beyond. Here, we report the use of centimeter-sized simple wet fabric pieces for electrical power generation by deploying the interplay of a spontaneously induced ionic motion across fabric nanopores due to capillary action and simultaneous water evaporation by drawing thermal energy from the ambient. Unlike other reported devices with similar functionalities, our arrangement does not necessitate any input mechanical energy or complex topographical structures to be embedded in the substrate. A single device is capable of generating a sustainable open circuit potential up to ∼700 mV, which is further scaled up to ∼12 V with small-scale multiplexing (i.e., deploying around 40 numbers of fabric channels simultaneously). The device is able to charge a commercial supercapacitor of ∼0.1 F which can power a white light-emitting diode for more than 1 h. This suffices in establishing an inherent capability of functionalizing self-powered electronic devices and also to be potentially harnessed for enhanced power generation with feasible up-scaling.

11.
Electrophoresis ; 38(5): 747-754, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27981589

RESUMO

The transport of two immiscible electrolytes through a narrow confinement whose walls bear a finite surface potential is analyzed through a lumped model by considering the influence of a regulatory self-induced axial electric field, termed as streaming potential. The presence of a surface charge on the channel walls culminates in the aqueous solutions carrying a net charge so as to make the overall system (channel and fluid) electrically neutral. The advection due to pressure driven flow or capillarity in the absence of any externally imposed electric field causes a preferential transport of net charged species. Thus, in order to render a net zero current through the system, there is an induced electric field which also retards the flow as a consequence of the force acting on the charged segments of fluid due to the streaming electric field. It is shown through a lumped model that for the situation of two distinct segments of fluids, the rate of front penetration into the capillary is strongly dependent on the relative conductivities of the two fluids. The streaming electric field evolves in accordance to the net conductivity of the channel and is responsible for dynamic changes in the retarding influence on the segments of fluid.


Assuntos
Eletrólitos/química , Microfluídica , Modelos Teóricos , Condutividade Elétrica , Viscosidade
12.
Soft Matter ; 12(27): 5968-78, 2016 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-27306568

RESUMO

The effects of ion partitioning on the electrokinetics in a polyelectrolyte grafted nanochannel, which is the representative of a soft nanochannel, are analyzed. Earlier studies in this regard have considered low polyelectrolyte layer (PEL) grafting density at the rigid nanochannel wall and, hence, an equal permittivity inside and outside the grafted layer. In order to overcome this shortcoming, the concept of Born energy is revisited. The coupled system of the modified Poisson-Boltzmann and Navier-Stokes equation is solved numerically, going beyond the widely employed Debye-Hückel linearization and low PEL densities. The complex interplay between the hydrodynamics and charge distribution, modulated by the ion partitioning effect, along with their consequent effects on the streaming potential and electrokinetic energy conversion efficiency (EKEC) have been systemically investigated. It has been observed that the ion partitioning effect reduces the EKEC in comparison to the case with equal permittivity up to a certain electrical double layer thickness after which it increases the EKEC. For a high concentration of mobile charges within the PEL, the net gain in the maximum EKEC due to the ion partitioning effect is about 10 fold that of the case when the ion partitioning effect is not considered. We delve into the various scaling regimes in the streaming potential and intriguingly point out the exact location of peaks in efficiency. The present study also reveals the possibility of improvement in streaming potential mediated energy conversion by the use of polyelectrolyte materials, which possess substantially lower dielectric permittivity than the bulk electrolyte.

13.
Phys Rev E ; 93: 043127, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27176410

RESUMO

The dielectrophoretic motion and shape deformation of a Newtonian liquid drop in an otherwise quiescent Newtonian liquid medium in the presence of an axisymmetric nonuniform dc electric field consisting of uniform and quadrupole components is investigated. The theory put forward by Feng [J. Q. Feng, Phys. Rev. E 54, 4438 (1996)10.1103/PhysRevE.54.4438] is generalized by incorporating the following two nonlinear effects-surface charge convection and shape deformation-towards determining the drop velocity. This two-way coupled moving boundary problem is solved analytically by considering small values of electric Reynolds number (ratio of charge relaxation time scale to the convection time scale) and electric capillary number (ratio of electrical stress to the surface tension) under the framework of the leaky dielectric model. We focus on investigating the effects of charge convection and shape deformation for different drop-medium combinations. A perfectly conducting drop suspended in a leaky (or perfectly) dielectric medium always deforms to a prolate shape and this kind of shape deformation always augments the dielectrophoretic drop velocity. For a perfectly dielectric drop suspended in a perfectly dielectric medium, the shape deformation leads to either increase (for prolate shape) or decrease (for oblate shape) in the dielectrophoretic drop velocity. Both surface charge convection and shape deformation affect the drop motion for leaky dielectric drops. The combined effect of these can significantly increase or decrease the dielectrophoretic drop velocity depending on the electrohydrodynamic properties of both the liquids and the relative strength of the electric Reynolds number and electric capillary number. Finally, comparison with the existing experiments reveals better agreement with the present theory.

14.
Soft Matter ; 12(7): 2056-65, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26758228

RESUMO

The pressure driven transport of two immiscible electrolytes in a narrow channel with prescribed surface potential (zeta potential) is considered under the influence of a flow-induced electric field. The latter consideration is non-trivially and fundamentally different from the problem of electric field-driven motion (electroosmosis) of two immiscible electrolytes in a channel in a sense that in the former case, the genesis of the induced electric field, termed as streaming potential, is the advection of ions in the absence of any external electric field. As the flow occurs, one fluid displaces the other. Consequently, in cases where the conductivities of the two fluids differ, imbibition dynamically alters the net conductivity of the channel. We emphasize, through numerical simulations, that the alteration in the net conductivity has a significant impact on the contact line dynamics and the concomitant induced streaming potential. The results presented herein are expected to shed light on multiphase electrokinetics devices.


Assuntos
Eletrólitos/química , Microfluídica , Condutividade Elétrica , Eletro-Osmose , Cinética , Pressão
15.
Microvasc Res ; 103: 41-54, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26524260

RESUMO

The electrokinetically modulated peristaltic transport of power-law fluids through a narrow confinement in the form of a deformable tube is investigated. The fluid is considered to be divided into two regions - a non-Newtonian core region (described by the power-law behavior) which is surrounded by a thin wall-adhering layer of Newtonian fluid. This division mimics the occurrence of a wall-adjacent cell-free skimming layer in blood samples typically handled in microfluidic transport. The pumping characteristics and the trapping of the fluid bolus are studied by considering the effect of fluid viscosities, power-law index and electroosmosis. It is found that the zero-flow pressure rise is strongly dependent on the relative viscosity ratio of the near-wall depleted fluid and the core fluid as well as on the power-law index. The effect of electroosmosis on the pressure rise is strongly manifested at lower occlusion values, thereby indicating its importance in transport modulation for weakly peristaltic flow. It is also established that the phenomenon of trapping may be controlled on-the-fly by tuning the magnitude of the electric field: the trapping vanishes as the magnitude of the electric field is increased. Similarly, the phenomenon of reflux is shown to disappear due to the action of the applied electric field. These findings may be applied for the modulation of pumping in bio-physical environments by means of external electric fields.


Assuntos
Eletro-Osmose , Modelos Teóricos , Fluxo Pulsátil , Eletricidade , Desenho de Equipamento , Cinética , Movimento (Física) , Pressão , Próteses e Implantes , Viscosidade
16.
Artigo em Inglês | MEDLINE | ID: mdl-26382498

RESUMO

We analyze the motion and deformation of a buoyant drop suspended in an unbounded fluid which is undergoing a quadratic shearing flow at small Reynolds number in the presence of slip at the interface of the drop. The boundary condition at the interface is accounted for by means of a simple Navier slip condition. Expressions for the velocity and the shape deformation of the drop are derived considering small but finite interface deformation, and results are presented for the specific cases of sedimentation, shear flow, and Poiseuille flow with previously reported results as the limiting cases of our general expressions. The presence of interfacial slip is found to markedly affect axial as well as cross-stream migration velocity of the drop in Poiseuille flow. The effect of slip is more prominent for drops with larger viscosity wherein the drop velocity increases. The presence of significant interface slippage always leads to migration of a deformed drop towards the centerline of the channel for any drop-to-medium viscosity ratio, which is in contrast to the case of no slip at the interface, which allows drop migration towards or away from the centerline depending on the viscosity ratio. We obtain the effect of slip on the cross-stream migration time scale, which quantifies the time required to reach a final steady radial position in the channel. The presence of slip at the drop interface leads to a decrease in the cross-stream migration time scale, which further results in faster motion of the drop in the cross-stream direction. Gravity in the presence of Poiseuille flow is shown to affect not only the axial motion, but also the cross-stream migration velocity of the drop; interfacial slip always increases the drop velocities.

17.
Artigo em Inglês | MEDLINE | ID: mdl-25974491

RESUMO

We address the implications of finite ionic size and solvent polarization on the response of the electric double layer (EDL) at two cation-selective electrodes in nonequilibrium conditions. The current between the electrodes is driven by a steady-state dc bias in conjunction with a probing high-frequency ac voltage. We report that the finite ionic size (steric) effect is prominent at high voltages near the electrodes where the ion densities are high, while the solvent polarization dramatically alters impedance characteristics for thick EDLs owing to the alteration of solvent permittivity in regions with a high electric field. Depending on the magnitude of the dc bias, our results show that the steric effects and solvent polarization lead to dramatic alterations in the net impedance for moderately thick electric double layers as compared to an extremely thin one. We also highlight that the solvent polarization suppresses the anomalous growth of dc current (anomalous rectification effect) for applied high-frequency ac voltages.

18.
Lab Chip ; 15(12): 2580-3, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25998260

RESUMO

We present a low-cost, disposable microbial fuel cell fabricated on a paper based platform, having a start-up time of 10 s. The platform deploys ordinary pencil strokes for graphite electrode deposition. The device uses a membrane-less design in a one-time injection (OTI) mode or a continuous capillary driven flow mode (CPF), where oxygen from the atmosphere is used up at the cathode for water formation, leading to the generation of bioelectricity. The performance of the fuel cell is evaluated using two bacterial strains, namely, Pseudomonas aeruginosa IIT BT SS1 and Shewanella putrefaciens. This flexible device is shown to retain bacteria for a period of at least one hour, resulting in the generation of almost 0.4 V using P. aeruginosa and a maximum current of 18 µA using S. putrefaciens without the use of any additional catalysts.


Assuntos
Fontes de Energia Bioelétrica , Biotecnologia/instrumentação , Papel , Eletrodos , Desenho de Equipamento , Grafite , Pseudomonas aeruginosa , Shewanella putrefaciens
19.
Phys Chem Chem Phys ; 17(11): 7282-90, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25693753

RESUMO

By considering an ion moving inside an imaginary sphere filled with a power-law fluid, we bring out the implications of the fluid rheology and the influence of the proximity of the other ions towards evaluating the conduction current in an ionic solution. We show that the variation of the conductivity as a function of the ionic concentration is both qualitatively and quantitatively similar to that predicted by the Kohlrausch law. We then utilize this consideration for estimating streaming potentials developed across narrow fluidic confinements as a consequence of the transport of ions in a convective medium constituting a power-law fluid. These estimates turn out to be in sharp contrast to the classical estimates of streaming potential for non-Newtonian fluids, in which the effect of rheology of the solvent is merely considered to affect the advection current, disregarding its contributions to the conduction current. Our results have potential implications of devising a new paradigm of consistent estimation of streaming potentials for non-Newtonian fluids, with combined considerations of the confinement effect and fluid rheology in the theoretical calculations.

20.
Artigo em Inglês | MEDLINE | ID: mdl-25353897

RESUMO

We consider the filling of a capillary by a viscoelastic fluid described by the Phan-Thien-Tanner (PTT) constitutive behavior. By considering both vertical capillary filling and horizontal capillary filling, we demarcate the role played by gravity and fluid rheology towards long-time oscillations in the capillary penetration depth. We also consider the isothermal filling of the capillary for a closed channel and thus bring out the fundamental differences in the nature of capillary filling for PTT and Newtonian fluids for closed channels in comparison to open channels. Through a scaling analysis, we highlight a distinct viscoelastic regime in the horizontal capillary filling which is in contrast to the Washburn scaling seen in the case of Newtonian fluids. Such an analysis with a very general constitutive behavior is therefore expected to shed light on many areas of microfluidics which focus on biofluids that are often well described by the PTT constitutive behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...